American Eagle Outfitters Quantum III: South Side Works

April 14, 2008

Samuel M. P. Jannotti

Topics

- General Building Information
- Existing/New Design Considerations
- Thesis Goals
- Structural Depth
 - Existing system
 - Proposed system
 - Gravity loads and design
 - Lateral loads and design
 - Continuing design
- Architectural Breadth
 - Frame locations
 - Façade architecture
 - Wall assemblies
- Success of Thesis
- Questions

April 14, 2008

Samuel M. P. Jannotti

Corporate Expansion in South Side of Pittsburgh

Location: 55 Hot Metal
St.; Pittsburgh, PA

 Height: Five Stories; Top of Parapet at 72'-4", Typical Floor 13'-8"

• Size: 150,000 Sq. Ft.

Picture Courtesy of Google Earth

Samuel M. P. Jannotti

Corporate Expansion in South Side of Pittsburgh

Construction: May 2007 to October 2008

Cost: \$16 million
Building Core and Shell

 Project Delivery
Method: Design-Bid-Build

Samuel M. P. Jannotti

ONginal Diegigficficatiditans

Structural

- 30' x 30' typical bays
- Wind controlled lateral design
- 80 psf live load

Architectural

- Frames do not interfere with architecture
- Reflects existing mood in South Side Works
- Materials lend to a sense of place
 - Brick and glass curtain wall

Mechanical

Two 35,000 pound rooftop units

April 14, 2008

Samuel M. P. Jannotti

ONginal Diegigficficatiditans

Structural

- Move building to Oakland, California
- Add 2 floors to building elevation

Architectural

- QIII reflects architecture in Oakland
- Add 2 floors to building elevation

Mechanical

Re-evaluate heating/cooling loads

April 14, 2008

Samuel M. P. Jannotti

Senior Thesis Goals

Structural

- Gravity system design with added stories
- Preliminary lateral system design

Architectural

- Redesign shell to fit Oakland, CA
- Shell scaling matches new building height

Mechanical

Find heating/cooling loads for new building

Samuel M. P. Jannotti

Existing System - Typical Bay

Typical bay and material properties

Samuel M. P. Jannotti

Samuel M. P. Jannotti

Samuel M. P. Jannotti

Samuel M. P. Jannotti

Samuel M. P. Jannotti

April 14, 2008

Samuel M. P. Jannotti

Proposed Gravity System

• 2 floors added to elevation

- Floor framing or loading doesn't change
- Gravity columns
 - Similar until 3rd floor

Proposed Gravity Framing

Typical infill beams: W16x31 (18 studs)

Typical girders: W24x68 (24 studs)

Columns stories 6-7: W12x53

Columns stories 4-5: W12x72

Columns stories 2-3: W12x96

Existing Gravity Framing

Typical infill beams: W18x35 (16 studs)

Typical girders: W24x55 (26 studs)

Columns stories 4-5: W12x53

Columns stories 2-3: W12x72

April 14, 2008

Samuel M. P. Jannotti

Proposed Lateral System

Building moved to Oakland, CA

Gravity loading unchanged

Lateral design now controlled by seismic forces

- Original wind base shear: 630 k
- New seismic base shear: 2240 k

Existing System	Proposed System
S _{DS} = 0.133	S _{DS} = 1.015
S _{D1} = 0.0784	$S_{D1} = 0.6$
Site Class: D	Site Class: D
R = 3.0	R = 6.0
$W_{o} = 3.0$	$W_{0} = 2.0$
C _d = 3.0	C _d = 5.0
Seismic Design Cat: B	Seismic Design Cat: E

Proposed Lateral System

Building moved to Oakland, CA

- Gravity loading unchanged
- Lateral design now controlled by seismic forces

• 2 floors added to elevation

Extra levels of lateral framing required

Seismic lateral forces

- Lateral frame member sections increase
- Significant detailing required
- Asymmetric frame layout can lead to torsional concerns

$\Lambda = 3.0$	N = 0.0
$W_{0} = 3.0$	$W_{0} = 2.0$
C _d = 3.0	C _d = 5.0
Seismic Design Cat: B	Seismic Design Cat: E

Samuel M. P. Jannotti

Truss Layout

Consider additional lateral frames

- Increase redundancy
- Decrease required member sections

April 14, 2008

Samuel M. P. Jannotti

Special Concentric Braced Frames

Columns and braces

- Original columns sized based on drift
- Columns optimized in ETABS including torsion
- Braces sized in ETABS including torsion

Girders

- Sized in excel based on shear resistance
- No shear reinforcement assumed

<= 0.50
0.50 - 0.70
0.70 - 0.90
0.90 - 0.95

SCBF Design

- Columns are efficient
- Braces can be optimized
- Girders require resizing assuming shear reinforcing

Samuel M. P. Jannotti

Eccentric Braced Frame

Columns and braces

- Original columns sized based on drift
- Columns optimized in ETABS including torsion
- Braces sized in ETABS including torsion

Eccentric Girders

- Link design based on AISC design example
- Shear reinforcement assumed

Eccentric Braced Frame Design

- Efficient preliminary design
- Continue with design of
 - Beam outside of link
 - Connections

Samuel M. P. Jannotti

Samuel M. P. Jannotti

Continuing Design

- Provide shear reinforcing for inverted-V trusses
- Design connections

Eccentric Braced Frames

- Check beams outside of link
- Link shear reinforcing
- Connections

Samuel M. P. Jannotti

NT-A obstructs ground level entrance

Proves inadequate for building architecture

Samuel M. P. Jannotti

NT-A obstructs ground level entrance

Proves inadequate for building architecture

April 14, 2008

Samuel M. P. Jannotti

NT-B and D optimal frame locations

Minimal interaction with façade architecture

Samuel M. P. Jannotti

NT-B and D optimal frame locations

Minimal interaction with façade architecture

April 14, 2008

Samuel M. P. Jannotti

Façade Architecture

Shell scaling re-evaluation

- Building height increases from 67' to 96'
- Existing shell scaling proves adequate

April 14, 2008

Samuel M. P. Jannotti

Façade Architecture

- Brick uncommon in Bay Area architecture
- Replace brick with aluminum panelling

April 14, 2008

Samuel M. P. Jannotti

Façade Assemblies

Façade materials not suited for Oakland, CA

- Use windows that describe Bay Area high rise
- Can also be energy efficient

DOUBLE GLAZING-SPECTRALLY SELECTIVE TINT^e

Picture Courtesy of Architectural Graphic Standards, Eleventh Edition; 2007

April 14, 2008

Samuel M. P. Jannotti

Façade Assemblies

Façade materials not suited for Oakland, CA

- Possible 60" rain per year
- Façade requires weather barrier

Picture Courtesy of Architectural Graphic Standards, Eleventh Edition; 2007

Samuel M. P. Jannotti

Senior Thesis Goals

Structural

- Gravity system design with added stories
- Preliminary lateral system design

Architectural

- Redesign shell to fit Oakland, CA
- Shell scaling matches new building height

Mechanical

April 14, 2008

Find heating/cooling loads for new building

Façade Assemblies

- Energy efficient window added
- Weather barrier required

Special Thanks To:

Samuel M. P. Jannotti

Large Girder Sizes

Attributed to AISC Seismic Design Provisions

 Beams must be designed against the shear from 100% tension brace strength and 30% compression brace strength

Results in large vertical force on beams

Over 1000k where braces were W18x119

• Only beam web resists this shear force

Continuing Design

Assume shear reinforcing to significantly lower girder sections

April 14, 2008

Samuel M. P. Jannotti

Large Girder Sizes

Design example provided below

Frame	Sections		Fo	rces	Fa	actors
Beam	W36X361		Pu =	522.47 k	Øb =	
Column	W14X370		Py -	5300 K	Øv – Øc =	
Story h	164	in +	Vu =	12.56 k		
Brace L	243.5077	in	∆x =	in		
lu, x lu v	30 15	ft ft	Mu =	1514 ft-k		
, j						
Fy, brace Fu, brace	50 65	ksi ksi				
Fy, beam	50	ksi				
Fu, beam E	65 29000	ksi ksi				
	- Haller					

0.9 0.9

0.9

April 14, 2008

Samuel M. P. Jannotti

Large Girder Sizes

Design example provided below

Beam	Properties				Brace Properties	
bf =	16.7	in	k	of =	11.3	in
tf =	2.01	in	t	f =	1.06	in
tw =	1.12	in	t	w =	0.655	in
d =	38	in	C	=	19	in
Ag =	106	in2	ł	4g =	35.1	in2
Z =	1550	in3	7	<u> </u>	262	in3
rx =	15.6	in				
ry =	3.85	in	r	y =	2.69	in
=	25700	in4				

Flange	Width Comp	arison: Beam vs. Brace	bf, beam > bf, brace YES	
bf, beam	=	16.7		
bf. brace	=	11.3	Beam Flange Adequate	

Element Slenderness - Beam	λ _f =	4.15422886	$\lambda_{f} < \lambda_{ps}$ YES
	λ _p =	9.15161188	Flanges are Compact
	$\lambda_w =$	33.9285714	
	λ _p =	90.5527912	$\lambda_w < \lambda_{ps}$ YES
			Web is Compact

April 14, 2008

Samuel M. P. Jannotti

Large Girder Sizes

Design example provided below

Brace Ax	kial Force	Unbalanced Vertical Beam Load
Ry =	1.1	Pty = 1300.17244
Pt =	1930.5	Pcy = 194.768556
KL/r =	90.52331	Qb = 1105.40388
Fe =	34.92826	
Fcr =	27.46372	
Pc =	289.1929	
Unbr	aced Length Check	Lb < Lp YES
Lp =	9.29 ft	
dc =	17.9	
Lb =	8.544167	Controlling Limit State is Yielding
Flexural	Strength	Mu < ObMn YES
	a a a a a a a a a a a a a a a a a a a	ind Cobinin (EC
Mn =	77500 ft-k	
Mn = ØbMn =	77500 ft-k 69750 ft-k	
Mn = ØbMn = Mu =	77500 ft-k 69750 ft-k 1514 ft-k	Beam is Adequate in Flexure
Mn = ØbMn = Mu =	77500 ft-k 69750 ft-k 1514 ft-k	Beam is Adequate in Flexure
Mn = ØbMn = Mu =	77500 ft-k 69750 ft-k 1514 ft-k	Beam is Adequate in Flexure
Mn = ØbMn = Mu = Com	77500 ft-k 69750 ft-k 1514 ft-k 1pression Strength	Beam is Adequate in Flexure Pu < ØcPn YES
Mn = ØbMn = Mu = Con KLx/rx	77500 ft-k 69750 ft-k 1514 ft-k 1pression Strength 23.07692 Controls	Beam is Adequate in Flexure Pu < ØcPn
Mn = ØbMn = Mu = KLx/rx KLx/ry	77500 ft-k 69750 ft-k 1514 ft-k 1512 ft-k 1970 1970 1970 1970 1970 1970 1970 1970	Beam is Adequate in Flexure Pu < ØcPn YES
Mn = ØbMn = Mu = KLx/rx KLx/rx Klxy/ry ØcFcr =	77500 ft-k 69750 ft-k 1514 ft-k 23.07692 Controls 46.75325 38.5 ksi	Beam is Adequate in Flexure

Additional Beam Axial Force							
Ptx =	1427.0185						
Pcx =	213.77037						
Pu =	820.39445						

April 14, 2008

Samuel M. P. Jannotti

Large Girder Sizes

Design example provided below

Co	mbined Loa	ading	Pr/Pc < 0.2 NO				
Pe1 =	56757.84		-				
Cm =	1		Combined Ratio		Limit		
B2 =	1		0.347757108	<=	1		
Pr =	1342.864						
B1 =	1.024233						
Mrx =	1467.704						
Pr/Pc =	0.329053		Beam is Adeo	quate in C	Combined Loading		
Shear Stre	ength		V	∕u < ØVn	YES		
h/tw =	33.92857						
2.24*(E*Fy)^0.5 =	53.9463437					
Aw =	38.0576						
ØVn =	1141.728						
Vu =	1116.774		Beam	is Adequa	ate in Shear		

Story Drift Check

Seismic Loading Controlled in Strength

Checks Performed for Both Seismic and Wind

- Seismic
 - Cd=5, allowable story drift was 0.02hsx
- Wind
 - Serviceability requirement of H/400

Story Drift Check - Wind

Wind Drift Minimal in Comparison to Seismic Drift

	Wind Story Drift										
Story	Item	Load	Point		Story Height	Story	Drift	Allowable	Conclusion		
Story	nem	Loud	X Y		Z	Х	Y	Dint	conclusion		
			in	in	in	in	in	in			
ROOF	Max Drift X	DSTLD1	780	-142	1146.5	6.3E-05		0.41	OK		
ROOF	Max Drift Y	DSTLD1	2638.5	1464	1146.5		5.2E-05	0.41	OK		
7TH	Max Drift X	DSTLD1	780	-142	982.5	6.2E-05		0.41	OK		
7TH	Max Drift Y	DSTLD1	2638.5	1464	982.5		5.7E-05	0.41	OK		
6TH	Max Drift X	DSTLD1	780	-142	818.5	0.00005		0.41	OK		
6TH	Max Drift Y	DSTLD1	2638.5	1464	818.5		4.9E-05	0.41	OK		
5TH	Max Drift X	DSTLD1	780	-142	654.5	3.7E-05		0.41	OK		
5TH	Max Drift Y	DSTLD1	2638.5	1464	654.5		3.5E-05	0.41	OK		
4TH	Max Drift X	DSTLD1	780	-142	490.5	2.7E-05		0.41	OK		
4TH	Max Drift Y	DSTLD1	2638.5	1464	490.5		0.00003	0.41	OK		
3RD	Max Drift X	DSTLD1	780	-142	326.5	1.5E-05		0.41	OK		
3RD	Max Drift Y	DSTLD1	2638.5	1464	326.5		0.00002	0.41	OK		
2ND	Max Drift X	DSTLD1	1260	384	162.5	5E-06		0.40625	OK		
2ND	Max Drift Y	DSTLD1	2638.5	1464	162.5		1.5E-05	0.40625	OK		
ROOF	Max Drift X	DSTLD2	780	-142	1146.5	9 7E-05		0 4 1	ОК		
ROOF	Max Drift Y	DSTLD2	2638.5	1464	1146.5	0	0.00008	0.41	OK		
7TH	Max Drift X	DSTLD2	780	-142	982.5	9.6E-05		0.41	OK		
7TH	Max Drift Y	DSTLD2	2638.5	1464	982.5		8.9E-05	0.41	OK		
6TH	Max Drift X	DSTLD2	780	-142	818.5	7.7E-05		0.41	OK		
6TH	Max Drift Y	DSTLD2	2638.5	1464	818.5		7.6E-05	0.41	OK		
5TH	Max Drift X	DSTLD2	780	-142	654.5	5.7E-05		0.41	OK		
5TH	Max Drift Y	DSTLD2	2638.5	1464	654.5		5.5E-05	0.41	OK		
4TH	Max Drift X	DSTLD2	780	-142	490.5	4.2E-05		0.41	OK		
4TH	Max Drift Y	DSTLD2	2638.5	1464	490.5		4.8E-05	0.41	OK		
3RD	Max Drift X	DSTLD2	780	-142	326.5	2.4E-05		0.41	OK		
3RD	Max Drift Y	DSTLD2	2638.5	1464	326.5		3.1E-05	0.41	OK		
2ND	Max Drift X	DSTLD2	1260	384	162.5	7E-06		0.40625	OK		
2ND	Max Drift Y	DSTLD2	2638.5	1464	162.5		2.4E-05	0.40625	OK		

Samuel M. P. Jannotti

Story Drift Check - Wind

Wind Drift Minimal in Comparison to Seismic Drift

1

1 =

5

					Siesmic	Story Drift					
Story	Load	Total Drift		Center o	Center of Mass		Amplified Drift	Amplified Story Drift		Conclusion	
		UX	UY	Х	Y	Z	X	Y	e Dilit	Х	Y
ROOF	QUAKEX	1.8976	0.4132	1156.966	1064.648	1146.5	1.6055	0.4325	3.28	OK	OK
7TH	QUAKEX	1.5765	0.3267	1157.97	1065.287	982.5	1.7365	0.4505	3.28	OK	OK
6TH	QUAKEX	1.2292	0.2366	1158.218	1065.555	818.5	1.6	0.378	3.28	OK	OK
5TH	QUAKEX	0.9092	0.161	1157.048	1065.698	654.5	1.492	0.317	3.28	OK	OK
4TH	QUAKEX	0.6108	0.0976	1156.388	1066.125	490.5	1.2865	0.2525	3.28	OK	OK
3RD	QUAKEX	0.3535	0.0471	1156.881	1066.551	326.5	1.0615	0.16	3.28	OK	OK
2ND	QUAKEX	0.1412	0.0151	1157.853	1067.224	162.5	0.706	0.0755	3.25	OK	OK
ROOF	QUAKEXY1	1.8938	0.4415	1156.966	1064.648	1146.5	1.5965	0.4825	3.28	OK	OK
7TH	QUAKEXY1	1.5745	0.345	1157.97	1065.287	982.5	1.7255	0.499	3.28	OK	OK
6TH	QUAKEXY1	1.2294	0.2452	1158.218	1065.555	818.5	1.596	0.4035	3.28	OK	OK
5TH	QUAKEXY1	0.9102	0.1645	1157.048	1065.698	654.5	1.488	0.337	3.28	OK	OK
4TH	QUAKEXY1	0.6126	0.0971	1156.388	1066.125	490.5	1.287	0.2615	3.28	OK	OK
3RD	QUAKEXY1	0.3552	0.0448	1156.881	1066.551	326.5	1.064	0.159	3.28	OK	OK
2ND	QUAKEXY1	0.1424	0.013	1157.853	1067.224	162.5	0.712	0.065	3.25	OK	OK
ROOF	QUAKEXY2	1,9015	0.3849	1156.966	1064.648	1146.5	1.6145	0.383	3.28	OK	OK
7TH	QUAKEXY2	1.5786	0.3083	1157.97	1065.287	982.5	1.748	0.402	3.28	OK	OK
6TH	QUAKEXY2	1.229	0.2279	1158.218	1065.555	818.5	1.6045	0.352	3.28	OK	OK
5TH	QUAKEXY2	0.9081	0.1575	1157.048	1065.698	654.5	1.4955	0.2975	3.28	OK	OK
4TH	QUAKEXY2	0.609	0.098	1156.388	1066.125	490.5	1.2865	0.243	3.28	OK	OK
3RD	QUAKEXY2	0.3517	0.0494	1156.881	1066.551	326.5	1.0585	0.161	3.28	OK	OK
2ND	QUAKEXY2	0.14	0.0172	1157.853	1067.224	162.5	0.7	0.086	3.25	OK	OK

Cd =

Samuel M. P. Jannotti